that nonadiabatic transitions become probable events even at low collision energy.39,40

Our study of acetone cation CID provides evidence for analogous behavior of a polyatomic ion at low collision energy. In this system, we identified an unexpectedly long-lived excited state that is scattered inelastically and dissociated in low-energy collisions.¹⁷ We have measured its lifetime and the threshold energy⁴² for inducing its nonadiabatic transition to the ground state, which then dissociates. We have also demonstrated the microscopic reversibility of the process as inelastic scattering in both boundbound and bound-unbound transitions.⁴³ We suggested that a nonadiabatic curve crossing mechanism at small He-M+ distances was responsible for this CID reaction at low collision energy and that higher excited states were excited in a similar mechanism at high collision energy. The nitromethane cation CID reactions reported here appear to be a second example of this kind of reaction dynamics for polyatomic ions. These results further demonstrate the hitherto unexpected importance of electronic excitation mechanism in the collisional activation/dissociation of polyatomic ions at moderate collision energies.

Conclusions

This investigation of nitromethane ion CID demonstrates that the formation of NO_2^+ and NO^+ proceeds via different reaction pathways. NO_2^+ ions are mostly formed from ions excited by an impulsive mechanism occurring via small impact parameter collisions and accompanied by large angular momentum exchange. NO⁺ ions are produced from at least two quite different reaction channels. The lowest energy dissociation path generates NO⁺ with modest energy deposition at zero scattering angle; we suggest this mechanism involves rearrangement of internally excited ions having structures approaching that of the transition state for forming methyl nitrite ions prior to the collisional activation step. The high-energy mechanism for generating NO⁺ by deposition of 5.5-5.7 eV proceeds from an excited-state surface of the nitromethane ions.

We conclude that the CID of nitromethane ion to NO⁺ and CH₃O[•] is the second example we have found for remarkably efficient conversion of translational energy into electronic excitation in the low and medium collision energy ranges and inefficient randomization of internal energy. Like acetone, it is an example of a polyatomic ion exhibiting the "weak assumption" QET behavior⁴⁴ in which a bottleneck to energy randomization prevents intramolecular relaxation to the ground state prior to dissociation. Nitromethane ion is a rather special case in other ways that suggest it exhibits several bottlenecks at branch points for nuclear rearrangements leading to specific dissociation mechanisms which are a strong function of internal energy.

Acknowledgment. Support of this research by the National Science Foundation, Grant No. CHE-8312069, is gratefully acknowledged. We thank Professor Tomas Baer for a very useful discussion of nuances in the unimolecular decay of the methyl nitrite cation and for sharing his data prior to publication.

Registry No. CH₃NO₂⁺, 74868-54-5; CH₃ONO⁺, 85232-65-1.

(44) Lorquet, J. C. Org. Mass Spectrom. 1981, 16, 469.
(45) Kandel, R. J. J. Chem. Phys. 1955, 23, 84.
(46) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R.

Ab Initio SCF Calculations on Low-Energy Conformers of N-Acetyl-N'-methylalaninamide and N-Acetyl-N'-methylglycinamide

Hans-Joachim Böhm* and Stefan Brode

Contribution from BASF AG, Central Research and Informatics, 6700 Ludwigshafen, Germany. Received March 27, 1990

Abstract: Results from ab initio SCF calculations with a double-5 plus polarization (DZP) basis set on five low-energy conformations of N-acetyl-N'-methylalaninamide ("dialanine") and three conformations of N-acetyl-N'-methylglycinamide ("diglycine") are reported. In addition, data from calculations with a triple-5 plus polarization (TZP) basis set on two conformations of diglycine are given. The results are used to assess the quality of current force fields aimed at peptides and proteins. The present ab initio data point to some important deficiencies of current protein force fields with respect to relative energies of dipeptide conformers.

1. Introduction

Accurate force fields are one of the most important tools in molecular modeling. Especially force fields for proteins and peptides are heavily needed in biochemical and drug design applications. Thus, several force fields such as AMBER,¹ ECEPP,^{2,3} CVFF,^{4,5} or CHARMM⁶ have been proposed and are now widely

used in force field calculations. However, the validation of a force field by comparing calculated energies and geometries with experimental data or high-quality quantum chemical ab initio calculations is difficult for several reasons.

Experimental structural information on peptides and proteins is only available for the condensed phase. Such a system is

⁽⁴²⁾ Fenistein, S.; Futrell, J.; Heninger, M.; Marx, R.; Mauclaire, G.;
Yang, Y. Chem. Phys. Lett. 1991, 179, 125.
(43) Qian, K.; Shukla, A.; Futrell, J. Chem. Phys. Lett. 1990, 175, 51.

D.; Mallard, W. G. J. Phys. Chem. Ref. Data, Suppl. 1988, 17.

Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. J. Am. Chem. Soc. 1984, 106, 765.
 Momany, F. A.; McGuire, R. F.; Burgess, A. W.; Scheraga, H. A. J. Phys. Chem. 1975, 79, 2361.
 Zimmerman, S. S.; Pottle, M. S.; Nemethy, G.; Scheraga, H. A. Macromolecules 1977, 10, 1.

⁽⁴⁾ Stern, P. S.; Chorev, M.; Goodman, M.; Hagler, A. T. Biopolymers 1983, 22, 1885.

⁽⁵⁾ Dauber-Osguthorpe, P.; Roberts, V. A.; Osguthorpe, D. J.; Wolff, J.; Genest, M.; Hagler, A. T. Proteins 1988, 4, 31.

⁽⁶⁾ Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187

⁽⁷⁾ Pettitt, B. M.; Karplus, M. Chem. Phys. Lett. 1985, 121, 194.

characterized by a large number of different bonded and nonbonded interactions that all contribute significantly to the stabilization or destabilization of the structure. The corresponding potential surface will therefore show a large number of local minima. If an energy minimization is performed by starting from the experimentally observed structure, the system will adopt the conformation of the nearest local minimum, which is not necessarily the global minimum. The deviation between calculated and experimental structures is therefore difficult to interpret, because good agreement may be incidental and/or result from a cancellation of errors. Moreover, experimental information on relative stabilities of different peptide conformations is sparse. In principle, high-quality ab initio calculations can be used to provide this information. However, due to the very high computational requirements both in cpu time and intermediate storage, such calculations were not feasable for most laboratories in the past.

N-Acetyl-N'-methylalaninamide ("dialanine") and N-acetyl-N'-methylglycinamide ("diglycine") have attracted considerable interest in their conformational properties because they can be viewed as model dipeptides. These molecules can serve as test cases for force fields derived for peptides and proteins: Several studies have been performed to determine geometries and energies of several conformations of these molecules using force field methods^{1-4,6} or quantum chemical calculations.⁸⁻¹² Perhaps most closely related to the present study are ab initio SCF calculations at the 4-21G level on dialanine and on diglycine by L. Schäfer et al.9-12 Although this basis set yields generally good results for bond lengths and angles of organic molecules, there are well-known deficiencies for systems containing hydrogen bonds.¹³

Recent progress in computer hardware and the development of the direct SCF method¹⁴⁻¹⁶ now allow for the use of larger basis sets. In order to assess the accuracy of the current force fields, we have carried out a series of ab initio SCF calculations employing a double-5 plus polarization basis set (DZP) for five conformations of dialanine and three conformations of diglycine. The inclusion of polarization functions is known to give a better description of the charge distribution in the molecule, thus improving the accuracy of the electrostatic and polarization contributions to the nonbonded interactions. In order to assess the basis set dependence of the present results, also a calculation using a triple-5 plus polarization basis set (TZP) was carried out on two conformers of diglycine.

The next section describes the details of the ab initio calculations. Section 3 compares the present ab initio results with the data obtained from force field calculations. Summary and conclusions are given in section 4.

2. Computational Methods

The program TURBOMOLE developed by Häser and Ahlrichs¹⁵⁻¹⁶ running on the computers Convex C210 and Silicon Graphics 4D20 and 4D220 was used in all calculations. The program employs the direct SCF method, allowing large calculations to be carried out with only modest disk space requirements. In the present calculations, we employed the following DZP and TZP basis sets (GTO primitive sets taken from Huzinagas tables¹⁷): DZP, C (8,4,1)/[4,2,1], N (8,4,1)/[4,2,1], O (8,4,1)/[4,2,1], H (4,1)/[2,1]; TZP, C (9,5,1)/[5,3,1], N (9,5,1)/[5,3,1], O (9,5,1)/[5,3,1], H (5,1)/[3,1].

The exponents of the polarization functions were chosen as 0.8 (d on C), 1.0 (d on N), 1.2 (d on O), and 0.8 (p on H). The calculation comprised a total number of 210 basis functions for dialanine and 185

- (11) Scarsdale, J. N.; van Alsenoy, C.; Klimkowski, V. J.; Schäfer, L.;
- Momany, F. A. J. Am. Chem. Soc. 1983, 105, 3438.
 (12) Schäfer, L.; Kilmkowski, V. J.; Momany, F. A.; Chuman, H.; van Alsenoy, C. Biopolymers 1984, 23, 2335.
 (13) Frisch, M. J.; DelBene, J. E.; Binkley, J. S.; Schaefer, H. F., 111. J. Chem. Phys. 1986, 84, 2279.
- (14) Aimilof, J.; Faegri, K., Jr.; Korsell, K. J. Comput. Chem. 1982, 3, 385.
 (15) Häser, M.; Ahlrichs, R. J. Comput. Chem. 1989, 10, 104.
- (16) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165.
- (17) Huzinaga, S. J. Chem. Phys. 1965, 42, 1293.

Figure 1. Atom numbering scheme for the molecules N-acetyl-N'methylalaninamide and -glycinamide. The torsion angles discussed in the text are defined as follows: $\omega_1 = \angle C4C6N7C9, \ \omega_2 =$ $\angle C9C12N17C19, \phi = \angle C6N7C9C12, \psi = \angle N7C9C12N17.$

(DZP) or 231 (TZP) basis functions for diglycine.

The calculations were carried out as follows. The various conformers were initially generated by using interactive computer graphics.¹⁸ The torsion angles ϕ and ψ (see Figure 1 for definition of torsion angles). which essentially define the conformation of the dipeptides,¹⁹ were set to the values of the local minima obtained from the force field AMBER.¹ For dialanine, there are five local minima on the AMBER potential surface denoted as $C_{7,ee}$, $C_{7,ax}$, α_R , α_L , and C_5 . Two of them contain an intramolecular hydrogen bond and are denoted $C_{7,eq}$ and $C_{7,ax}$ (with the CH₃ side chain oriented equatorially or axially with respect to the seven-membered ring formed by the hydrogen bond). The C_5 conformer is fully extended, and the α_R and α_L conformers adopt the right- and left-handed helical conformation. For diglycine, there exist three local minima on the AMBER potential surface denoted as C_7 , α , and C_5 . A semiempirical energy minimization of the bond lengths and angles was then carried out with the MNDO method using the AM1 parametrization.²⁰ The torsion angles were kept fixed during this calculation. (Note that the helical conformations are no local minima within the MNDO-AM1 approximation. The energy minimization starting at the α conformations yields the C7 conformation.) The AM1-minimized structures were used as input to the ab initio SCF calculations. A full optimization of all degrees of freedom was carried out in TURBOMOLE. The internal coordinates were defined as suggested by Pulay et al.²² The minimization was continued until the maximum energy gradient dropped below 0.1 kJ mol⁻¹ Å⁻¹ and the energy change over the last 20 iterations was less than 0.04 kJ/mol. Between 50 and 100 SCF + gradient steps were necessary to achieve convergency. The fully optimized structures at the DZP level were used as input to the TZP calculations. Apart from the five conformations of dialanine and three conformations of diglycine minimized in the present study, no attempt was made to find further local minima of the potential surface.

The wave functions calculated for the fully minimized structures of diglycine were used to calculate the electrostatic potential at grid points surrounding the molecule. The set of points was a cubic grid of 0.75 Å spacing in a 1-Å-thick shell around the molecule. The inner surface of this shell was 4 Å away from the molecule. The electrostatic potential was calculated at 1278 points for the C5 conformer, at 1289 points for the C₇ conformer, and at 1342 points for the α conformer. A set of fractional charges positioned at the nuclei was then fitted to the potential.

- (19) Ramachandram, G. N.; Ramakrishnan, C.; Sasisekharan, V. J. Mol. Biol. 1963, 7, 195
- (20) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J.
 Am. Chem. Soc. 1985, 107, 3902.
 (21) Pulay, P.; Fogarsi, G.; Pang, F.; Boggs, J. E. J. Am. Chem. Soc. 1979,
- 10ì, 2550.
- (22) Chirlian, L. E.; Miller Francl, M. J. Comput. Chem. 1987, 8, 894. (23) As implemented in the program DISCOVER; Biosym Technologies, San Diego, CA 92121.

 ⁽⁸⁾ Maigret, B.; Pullman, B.; Perahia, D. J. Theor. Biol. 1971, 31, 269.
 (9) Klimkowski, V. J.; Schäfer, L.; Momany, F. A.; van Alsenoy, C. J. Mol. Struct. 1985, 124, 143.

⁽¹⁰⁾ Schäfer, L.; van Alsenoy, C.; Klimkowski, V. J.; Scarsdale, J. N. J. Chem. Phys. 1982, 76, 1439.

⁽¹⁸⁾ Program INSIGHT; Biosym Technologies, 10065 Barnes Canyon Road, San Diego, CA 92121.

Table	L	Ab	Initio	DZP	Results	on	Dialanine ^a
Laure		AU	1 in tro	~~.		~	D 101011110

		confor	mation	
	C _{7.eq}	C _{7,ax}	C5	αL
rel energy (kJ/mol)	0.0	12.6	2.1	18.5
ϕ (deg)	-85.9	75.8	-156.0	65.9
ψ (deg)	79.1	-58.9	161.0	33.5
ω_1 (deg)	-178.3	174.1	177.6	166.0
ω_2 (deg)	-174.1	-178.8	180.0	-176.1
R_{C4-C6} (Å)	1.509	1.510	1.510	1.510
R_{C6-N7} (Å)	1.348	1.348	1.347	1.364
R_{C6-O5} (Å)	1.201	1.202	1.199	1.192
R_{N7-C9} (Å)	1.455	1.461	1.440	1.457
R_{CP-C11} (Å)	1.519	1.528	1.532	1.524
R_{C9-C12} (Å)	1.534	1.534	1.526	1.533
$R_{C12-C013}$ (Å)	1.198	1.199	1.194	1.198
$R_{C12-N17}$ (Å)	1.345	1.340	1.346	1.348
$R_{N17-C19}$ (Å)	1.443	1.443	1.444	1.443
R_{N7-H8} (Å)	0.997	0.996	0.997	0.996
$R_{N17-H18}$ (Å)	1.000	1.000	0.997	0.995
∠C4C6N7 (deg)	116.2	115.2	115.8	115.6
∠C6N7C9 (deg)	123.1	122.5	122.3	127.1
∠N7C9C12 (deg)	109.9	113.1	107.5	113.9
2C9C12N17 (deg)	114.4	116.0	115.1	117.0
2C12N17C19 (deg)	121.9	121.3	122.6	121.3

^a The total energy of the lowest energy conformation $C_{7,eq}$ is -492.8309987 au. Note that the α_R conformer is not a local minimum.

In a first series of least-square fits, all charges were allowed to vary. In a second set of fits, all charges on nonpolar hydrogen (those bound to carbon) were set to zero and charges at similar atoms were kept at identical values. For example, in this second approach, five groups of atoms ((C₄, C₉, C₁₉), (O₅, O₁₃), (C₆, C₁₂), (N₇, N₁₇), (H₈, H₁₈)) are forced to carry the same partial charges, thus leading to four independent adjustable parameters for the fit. Furthermore, an attempt was made to fit the potentials of all three diglycine conformers simultaneously by a single set of charges. The present approach is similar to the work of Chirlian et al.²²

3. Results

3.1. Dialanine. The results from the ab initio SCF calculations on five conformations of dialanine using a DZP basis set are shown in Table I. Plots of the minimized structures of dialanine are given in Figure 2. The lowest energy conformation found is the conformation $C_{7,eq}$ with $\phi = -86^{\circ}$ and $\psi = 79^{\circ}$. It is characterized by a strained intramolecular hydrogen bond with $\angle_{N17H18\dots05} =$ 139° and $R_{H18\dots05} = 2.22$ Å. Both peptide groups are slightly tilted, with $\omega_1 = -178^{\circ}$ and $\omega_2 = -174^{\circ}$. The C₅ conformation ($\phi = -156^{\circ}, \psi = 161^{\circ}$) is 2.1 kJ/mol less stable than $C_{7,eq}$. The C₅ intramolecular hydrogen bond geometry is characterized by $R_{H18\dots05} = 2.21$ Å and $\angle_{N17H18\dots05} = 105^{\circ}$. $C_{7,ex}$ ($\phi = 76^{\circ}, \psi =$ -59°) is 12.6 kJ/mol less stable than $C_{7,eq}$. Interestingly the intramolecular hydrogen bond in $C_{7,ax}$ is shorter than in $C_{7,eq}$, with $R_{H18\dots05} = 2.03$ Å and $\angle_{N17H18\dots05} = 146^{\circ}$.

The helical conformation α_R is not a local minimum on the DZP ab initio potential surface of dialanine. In the course of the minimization, the energy decreases rapidly to 13.5 kJ/mol above the $C_{7,eq}$ energy while the right-handed helical conformation ($\phi = -63^{\circ}, \psi = -34^{\circ}$) is maintained. Then there is a slow change of the conformation toward the $C_{7,eq}$ conformation. The maximum residual energy gradient along this $\alpha_R \rightarrow C_{7,eq}$ pathway is 5 kJ mol⁻¹ Å⁻¹. In contrast to the right-handed helical conformation, the left-handed conformation α_L ($\phi = 66^{\circ}, \psi = 33^{\circ}$) is a local minimum on the DZP ab initio potential surface with an energy of 18.5 kJ/mol above the global minimum.

The dependence of bond lengths and bond angles on the conformation is very small. For example, $R_{\rm N17H18}$ varies from 0.995 to 1.000 Å depending on whether it is involved in a hydrogen bond or not. The largest change of a bond length occurs for $R_{\rm N7C9}$, which varies from 1.440 (C₅) to 1.461 Å (C_{7,ax}). The largest change of a bond angle is found for $\angle_{\rm N7C9C12}$, which varies from 107.5° (C₅) to 113.9° (C_{7,ax}).

Additional structural details may be derived from the atomic Cartesian coordinates of the four local minima of dialanine as given in Table II.

Figure 2. Molecular structure of the four low-energy conformations $C_{7,eq}$ (a), $C_{7,ax}$ (b), C_5 (c), and α_L (d) of dialanine.

3.2. Diglycine. The ab initio DZP results on the three conformations C_7 , C_5 , and α of diglycine are shown in Table III. Plots of the minimized structures are given in Figure 3. Note that, for diglycine, $C_{7,eq}$ and $C_{7,ax}$ as well as α_R and α_L are identical. The lowest energy conformation found is the C₅ conformation with $\phi = -180^{\circ}$ and $\psi = 180^{\circ}$. The C₇ conformation ($\phi = -85^{\circ}, \psi$ = 75°) is slightly less stable than C₅ by 1.3 kJ/mol. The C₇ strained intramolecular hydrogen bond is characterized by $L_{N17H18\dots05} = 140^{\circ}$ and $R_{H18\dots05} = 2.20$ Å. The α conformation is not a local minimum on the DZP ab initio potential surface. We have carried out a constrained geometry optimization of the conformer with ϕ and ψ kept fixed at the values of the corresponding AMBER structure¹ ($\phi = -60^{\circ}, \psi = -39^{\circ}$). With use of these values, the α conformation is 16.4 kJ/mol less stable than C_5 . The largest deviation from planarity of the peptide groups occurs for the helical conformation with $\omega_1 = -170^\circ$ and $\omega_2 =$ 175°.

The variation of bond lengths and angles upon conformational change is very similar to that of dialanine. The largest change of a bond length occurs for R_{N7C9} , which varies from 1.431 (C₅) to 1.448 Å (C₇). The largest change of a bond angle is found for $\angle_{N7C9C12}$, which varies from 109.4° (C₅) to 115.7° (α).

Figure 3. Molecular structure of the three low-energy conformations C_7 (a), C_5 (b), and α (c) of diglycine.

The ab initio TZP results on the C₇ and C₅ conformer of diglycine are also given in Table III. C₅ is 1.7 kJ/mol more stable than C₇ at the TZP level. The geometric differences between the DZP and the TZP minimized structures are very small. The intramolecular hydrogen bond is slightly longer, with $R_{H18\cdots05} = 2.21$ Å ($\angle_{N17H18\cdots05} = 105^{\circ}$) for the C₅ conformer and $R_{H18\cdots05} = 2.24$ Å ($\angle_{N17H18\cdots05} = 139^{\circ}$) for the C₇ conformer, as compared to the DZP results. On going from the DZP level to the TZP level, C-N, C-C, and C-O bond lengths are increased by 0.001–0.004 Å, whereas C-H and N-H bond lengths are decreased by 0.003–0.005 Å. The change in bond angles is less than 1° on going from DZP to TZP.

The atomic Cartesian coordinates corresponding to the three conformers of diglycine and the final energy gradients for the conformers C_7 and C_5 (DZP basis set) are given in Tables IV and V.

The results from the least-squares fit of partial charges to the molecular electrostatic potential of diglycine are shown in Table VI. The "all-atom" model yields a good representation of the electrostatic potential. If a single set of charges is used to describe the potential of all three conformers, the rms deviation of the fit is increased from 0.4 to 1.05 kJ/mol. The "united-atom" representation is able to fit the electrostatic potential with rms values of 1-1.9 kJ/mol for individual conformers and with a rms value of 2.3 kJ/mol for the simultaneous fit of all three conformers. In view of the small number of only four adjustable parameters, these fits can also be regarded as reasonable. However, they are achieved at the expense of partial charges deviating from expectations based on electronegativity: The fit using the united-atom representation yields a very small partial charge on the nitrogen atoms.

4. Discussion

In judging the present results, there are two points one should bear in mind: (1) At the DZP and the TZP levels, the electrostatic interactions and multipole moments are usually overestimated by typically 5-20%.²² (2) Correlation effects are not included at the Hartree-Fock level.

Table II. Atomic Cartesian Coordinates for Dialanine Conformers $C_{7,eq}$, $C_{7,aq}$, C_{5} , and α_L (DZP Basis Set)

- /,83,	- ,,	<u>, (</u>					
atom	x	У	Z	atom	x	<u>y</u>	Z
			C	7.eq			
H1	-0.3415	1.1219	-0.0294	C12	4.2016	1.2102	1.4428
H2	-0.3265	-0.4533	-0.8475	O13	4.5420	2.1955	2.0322
H3	-0.3545	-0.3870	0.9068	H14	5.4415	0.3889	3.6148
C4	0.0337	0.1021	0.0158	H15	3.7902	-0.0720	4.0268
O5	2.1021	-1.0475	0.0644	H16	4.9316	-1.2971	3.4516
C6	1.5396	0.0136	0.0396	N17	4.2530	-0.0284	1.9640
N7	2.2064	1,1851	0.0254	H18	3.8072	-0.7627	1.4512
H8	1.6923	2.0365	0.0962	C19	4.6176	-0.2620	3.3401
C9	3.6590	1.2728	0.0093	H20	5.1866	2.5902	-0.7436
H10	4.0160	0.4009	-0.5317	H21	3.7074	2.5560	-1.7149
CII	4.1009	2.5412	-0.6991	H22	3.7587	3.4249	-0.1640
			~				
HI	-0 4217	1 0312		7,ax C12	4 2168	1 1632	-1 4959
H	-0.4750	_0 7164	-0.1994	012	1 8450	2 0522	-1.955
112 112	-0.4/30	0.1242	-0.3234	U13	4.0437	2.0322	-4 1092
	-0.2400	-0.1343	1.1199		4.3072	0.3/9/	-4.1003
04	-0.0099	1.0014	0.0726		3.7209	-0.3170	-3.3240
03	2.0389	-1.0/80	-0.2439		4.3093	-1.3310	-3.0333
	1.4809	-0.0196	-0.1094	NI/	4.03/0	-0.0382	-2.00//
N7	2.1413	1.1585	-0.0823	HIS	3.51/9	-0.7308	-1.3894
Hð	1.5880	1.9845	-0.0250	C19	4.6321	-0.3377	-3.3568
<u>C9</u>	3.5875	1.3648	-0.1113	H20	5.3905	0.8607	0.9425
HIO	3.7245	2.4248	0.0736	H21	3.9427	0.8582	1.9543
CH	4.3353	0.5908	0.9735	H22	4.2429	-0.4829	0.8463
			(C,			
HI	-0.3060	1.0903	-0.2192	C12	4.0358	2.7240	0.1498
H2	-0.3172	-0.6499	1.0912	013	3.2648	3.6175	-0.5888
H3	-0.2934	-0.1059	1.0912	H14	5.3700	4.9610	0.2313
C4	0.0691	0.1171	0.0890	H15	5.5699	4.5345	1.9316
05	2.1468	-1.0000	0.3196	H16	6.8858	4.2346	0.7836
Č6	1.5767	0.0307	0.0969	N17	5.2899	2.9223	0.5956
N7	2.2318	1.1814	-0.1525	H18	5.8303	2 1272	0.8578
HS	1 7 3 9 3	2 0371	-0 2994	C19	5 8054	4 23 50	0 9093
C9	3 6686	1 2695	-01291	H20	5 3893	0 8471	-1 3979
Hin	4 03 59	0 6437	0.6830	H21	4 01 39	-0 2300	-1 6224
CII	4.3015	0.7935	-1.4402	H22	3.9574	1 4088	-2.2714
011	4.5015	0.7955	1.7704	1122	5.5514	1,4000	2 . 2 /14
	0 10/0	1 1011	0.0400	^x L	4 3 3 1 7	1 0000	1 2075
HI	-0.3849	1.1011	-0.2492	C12	4.3217	1.2787	-1.3877
H2	-0.3758	-0.6261	-0.6791	013	5.4446	0.8794	-1.4675
H3	-0.0396	-0.1205	0.9797	H14	5.1527	1.7550	-3.8417
C4	0.0946	0.1397	-0.0711	H15	3.9532	0.4970	-4.1440
05	2.1458	-0.7448	-0.8785	H16	3.5568	2.1956	-4.4628
C6	1.5716	0.1757	-0.3841	N17	3.6139	1.7117	-2.4501
N7	2.2042	1.3424	-0.0684	H18	2.6405	1.8678	-2.3157
H8	1.6904	2.0016	0.4759	C19	4.0939	1.5223	-3.7981
C9	3.6556	1.4579	-0.0184	H20	5.3693	0.7560	1.0852
H10	3.8487	2.5011	0.2365	H21	3.8625	0.7893	2.0163
C11	4.3016	0.5729	1.0414	H22	4.1535	-0.4783	0.8104

The first error will yield an artificial stabilization of the C_7 conformation, because this structure contains an intramolecular hydrogen bond. On the other hand, the neglect of the correlation effects such as the dispersion interaction will artificially destabilize the C_7 conformation relative to the C_5 conformation because it is more compact with more comparatively short nonbonded atom-atom contacts. One may hope that these two errors cancel at least in part. A rough estimate for both contributions may be obtained by analyzing the results from force field calculations and considering the contributions from the attractive part of the Lennard-Jones potential and the point-charge contributions. By making the assumption that the C_6/R^6 term of the force field gives a measure of the correlation effects E_{corr} (or at least describes the relative importance of the correlation effects for different con-formations) and the $q_i q_j / R_{ij}$ term of the force field gives a measure of the electrostatic interaction E_{ω} , we can calculate the differences in the nonbonded correlation interaction ΔE_{corr} and the electrostatic interaction ΔE_{es} between the C₅ and C₇ conformations. With the CVFF force field,⁵ we obtain the following values for dialanine: $\Delta E_{es}(C_5 - C_7) \simeq 11.6 \text{ kJ/mol}$ $\Delta E_{\rm corr}(C_5-C_7) \simeq 1.3 \text{ kJ/mol}$

Thus, if ΔE_{es} is overestimated by 10%, this error (0.1 × 11.6 kJ/mol) roughly cancels the neglect of the correlations effects (1.3 kJ/mol). However, as both E_{es} and E_{corr} are highly dependent on conformational changes, this result may be fortuitious. It is

Table III. Ab initio DZP and IZP Results on Digiycir	ole III. Ab ini		and IZP	Results on	Digiycine
---	-----------------	--	---------	------------	-----------

			conformation (ba	sis set)		
	$\overline{C_7 (DZP)}$	$C_{5}(DZP)$	α (DZP)	C ₇ (TZP)	C ₅ (TZP)	
rel energy (k.	J/mol) 1.3	0.0	16.4	1.7	0.0	
ϕ (deg)	-85.4	-179.9	-60.0	-85.6	-179.8	
ψ (deg)	75.5	-179.8	-39.0	77.1	-179.8	
ω_1 (deg)	-177.2	-179.9	-170.0	-178.0	-179.9	
ω_2 (deg)	-175.4	-178.4	174.8	-175.7	-178.9	
R_{C4-C6} (Å)	1.508	1.509	1.510	1.511	1.512	
R_{C4-N7} (Å)	1.348	1.347	1.362	1.349	1.347	
$R_{C6-OS}(\mathbf{A})$	1.200	1.198	1.192	1.201	1.199	
R_{N7-C9} (Å)	1.448	1.431	1,446	1.450	1.434	
R_{C} (Å)	1.526	1.517	1.524	1.529	1.521	
$R_{C12-O13}(\dot{A})$	1.197	1.197	1.193	1.198	1.197	
$R_{C12-N17}$ (Å)	1.344	1.343	1.350	1.343	1.344	
$R_{N17-C19}$ (Å)	1.442	1.445	1.444	1.447	1.449	
R_{N7-H8} (Å)	0.996	0.998	0.997	0.991	0.993	
RN17-H18 (Å)	1.000	0.996	0.996	0.995	0.992	
2C4C6N7 (d	eg) 116.3	115.9	115.3	116.3	116.0	
2C6N7C9 (d	eg) 122.6	121.5	121.6	122.5	121.4	
2N7C9C1 (d	eg) 112.8	109.4	115.7	112.5	109.4	
∠C9C12N17	(deg) 114.8	114.9	115.8	115.1	114.8	
2C12N17C19	(deg) 122.0	121.8	121.4	121.6	121.8	

"The total energy of the lowest energy conformation is -453.794 877 8 au at the DZP level and -453.944 236 1 au at the TZP level. Note that, for the helical conformation, ϕ and ψ were kept fixed during the calculation.

Table IV.	Atomic Cartesian	Coordinates (Å) and Final Energy
Gradients	(kJ mol ⁻¹ Å ⁻¹) for	Diglycine Conformers C_7 and C_5 (DZP
Basis Set)		

Table V.	Atomic Cartesian Coordinates	for	Dialanine	α -Helix	Conformer
and Digly	cine Conformers C7 and C5				

atom

x

-0.2607 -1.0518

у

-0.0192

-1.0360 2.3515

0.6096

1.2825

1.2056

1.9686

1.3713

0.6191

0.0314

-0.9784

2.4202

1.2858

0.7077

1.2342

2.0314

1.4183

0.5343

0.0000

2.4539

1.0319

0.8704

1.2204

2.0204

-1.0140

z

0.3393

-0.0087

-0.1435

-0.3411

-0.5576

1.0704

-0.0249

0.2671

0.0486

0.8521

-0.0339

-0.2210

0.3523

-0.9937

0.6532

0.1432

0.1766

0.0272

-0.8741

0.0089

0.0151

0.0908

-0.9272

0.8211

0.0126

-0.0245

z

Basis Se	et)						atom	l X	У	z	atom	x	ر
atom	x	у	Z	dE/dx	dE/dy	dE/dz		D	ialanine α·	Helix Con	former	DZP Basi	s Set)
			<u> </u>				- HI	-1.4892	2.8667	2.4151	H11	-0.2607	-1.0
HI	-1 5851	1 3541	-3 3979	-0.0155	0.0076	0.0033	H2	-2.1887	1.4555	3.2158	C12	1.5341	-0.0
н2	-7 4874	2 5768	-2 4807	0.0100	-0.0065	-0.0000	H3	-0.7623	2.2320	3.9102	O13	2.1425	-1.0
H3	_0 9353	2.0760	-3 2003	0.0000	0.0000	-0.0146	C4	-1.2542	1.9660	2.9803	H14	3.8014	2.3
	-1.4906	2.9908	-2.7167	-0.0330	-0.0038	-0.0140	O5	0.4984	0.3810	2.7185	H15	4.0126	0.6
05	-0.4622	2.1900	-0.6410	-0.0155		0.0231	C6	-0.3617	1.0269	2.2052	H16	3.9072	1.2
05	-0.4023	2.0737	-0.0410	-0.0176	-0.0012	0.0103	N7	-0.6095	0.9585	0.8675	N17	2.1021	1.2
	-0./98/	1.8407	-1.4220	-0.0170	-0.0012	0.0103	H8	-1.4205	1.4182	0.5152	N18	1.5321	1.9
IN /	-0.6049	0.5336	-1.1855	-0.0332	0.0044	0.0300	C9	0.0110	-0.0445	0.0317	C19	3.5345	1.3
Hð	-0.8210	-0.1274	-1.8984	-0.0094	-0.0081	-0.0152	H10	-0.3401	0.1065	-0.9873			
<u>C9</u>	-0.0112	0.0413	0.0402	0.0470	0.0595	0.0449			Distusion	Conforme	- C (T	7D Davis C	(A)
HIU	-0.3356	-0.9818	0.1961	0.0076	-0.0071	-0.0105	ш	1 6939	Digiycine	2 2 5 2 9	r C ₇ (1.	CP Dasis 3	0 4
HII	-0.3595	0.6568	0.8651	-0.0341	-0.0079	-0.0383	пі 111	-1.0020	1.3300	-3.3320	C12	1 6224	0.0
C12	1.5136	0.0287	-0.0038	-0.0336	-0.0380	-0.0057	п2 Ц1	-2.4444	2.0039	-2.4/2/	012	1.5234	0.0
013	2.1203	-0.9943	-0.1418	0.0117	-0.0043	0.0008		-0.8834	2.9313	-3.220/	013	2.1377	-0.9
H14	3.8001	2.3400	0.5115	-0.0098	0.0028	0.0053	05	-1.3010	2.2093	-2.7080	U14	3.7073	2.4
H15	3.8457	1.4719	-1.0305	-0.0091	0.0024	0.0095	05 C6	-0.4987	1 8470	-1.4108	H16	4 0454	0.7
H16	4.0322	0.5864	0.4830	-0.0015	-0.0063	0.0062	N7	-0.8198	0 5283	-1 1071	N17	2 0038	1 2
N17	2.0925	1.2351	0.1262	0.0058	-0.0041	0.0242	H9	-0.0077	_0.5285	-1.1971	H19	1 4006	2.0
H18	1.4963	2.0384	0.1230	0.0159	0.0001	-0.0040		-0.0149	0.1200	0 0213	C10	3 5242	1 4
C19	3.5185	1.4172	0.0098	-0.0058	0.0397	-0.0345	HIO	-0.3139	-1 0002	0.0215	CI	5.5272	1.7
			~				1110	0.5157	1.0002	0.1000			
			C,						Diglycine	Conforme	r C5 (T	ZP Basis S	let)
HI	-1.2961	-3.7571	0.0580	-0.0008	-0.0007	0.0047	H1	-1.2975	-3.7563	-0.0121	H11	-0.3517	0.5
H2	-2.7633	-3.2618	0.9254	0.0000	0.0002	-0.0024	H2	-2.7464	-3.3016	0.8901	C12	1.5229	0.0
H3	-2.7753	-3.3327	-0.8290	0.0035	0.0006	-0.0023	H3	-2.7804	-3.3029	-0.8594	O13	2.1599	-1.0
C4	-2.1590	-3.0954	0.0355	0.0021	0.0009	0.0127	C4	-2.1585	-3.1006	0.0033	H14	3.7395	2.4
05	-2.6211	-0.7729	-0.1045	0.0030	-0.0008	-0.0489	O5	-2.6266	-0.7740	-0.0153	H15	3.9559	1.0
C6	-1.7907	-1.6326	-0.0256	0.0030	-0.0008	-0.0489	C6	-1.7914	-1.6335	-0.0045	H16	3.9824	0.8
N7	-0.4738	-1.3540	0.0182	0.0017	0.0006	-0.0231	N7	-0.4741	-1.3534	0.0040	N17	2.0860	1.2
H8	0.2174	-2.0711	0.0836	0.0003	0.0004	-0.0044	H8	0.2143	-2.0695	0.0119	H18	1.5011	2.0
C9	0.0071	-0.0070	-0.0242	0.0145	-0.0053	0.0256	<u>C9</u>	0.0019	-0.0004	0.0016	C19	3.5243	1.3
H10	-0.3789	0.5785	0.8115	0.0006	0.0036	-0.0007	HIU	-0.3599	0.5412	0.8694			
H11	-0.3187	0.4988	-0.9346	0.0000	-0.0026	-0.0007							
C12	1.5242	-0.0101	0.0296	-0.0165	0.0073	-0.0627	the (C confe	rmation	as the low	est ene	rov struct	hira f
013	2.1536	-1.0263	0.1001	0.0083	-0.0005	0.0101	A 100	c _{7,eq} come		as the low		igy struct	
H14	3.7517	2.3675	0.4526	0.0194	-0.0162	-0.0440	Also	the bond	liengins	and bond	angles	obtained	
H15	3.9259	1.3971	-1.0191	-0.0042	0.0027	0.0025	calc	ulation a	re very	similar t	o the	present I	JZP
H16	3.9936	0.6190	0.5635	0.0135	-0.0043	-0.0069	Sign	ificant di	ferences	are, howe	ver, fou	ind for the	e rela
N17	2.0878	1.2116	0.0061	-0.0093	0.0284	0.0425	of th	ne conform	ners and	for the lov	west en	ergy struc	cture
H18	1.4983	2.0035	-0.1325	-0.0008	-0.0012	-0.0005	For	dialanine	, the C _c c	conformat	tion is :	5.8 kJ/mc	ol less
C19	3.5189	1.4098	-0.0069	0.0046	-0.0423	0.0524	C7.	with the	4-21G	basis set ¹	² comr	ared with	h the
							- fere	nce of 2.1	kI/mol	at the D2	ZP leve	l. The di	ffere

clear that more accurate calculations including correlation effects are needed to provide a more reliable estimate for the relative energies.

Schäfer et al. have reported 4-21G calculations on dialanine^{10,11} and on diglycine.^{8,9} In agreement with our results, they have found

C9	0.0019	-0.0004	0.0016	C19	3.5243	1.3985	-0.0040
H10	-0.3599	0.5412	0.8694				
the C	- confo	rmation a	s the low	ect ener	ov structi	ure for d	ialanine
	7.eq Come				gy struct		
AISO	the bond	i lengths a	ina bona	angles	obtained	from th	e 4-210
calcu	ilation a	re very s	similar to	o the p	resent D	OZP geo	metries.
Signi	ficant dif	ferences a	ıre, howe	ver, foui	nd for the	relative	energies
of the	e conforn	ners and f	or the low	vest ene	rgy struc	ture of d	iglycine.
For c	lialanine	the C ₄ c	onformat	ion is 5	.8 kJ/mo	l less sta	ble than
C	with the	4-21G H	asis set ¹²	² compa	ared with	the end	erøv dif-
feren	ce of 21	kI/mol	at the D7	P level	The dif	ference	hetween
the A	216 0	d + b = D7	D basis of	ste ic m	ora striki	ng for d	iglucine
T1 T1			r Uasis se	515 15 11		ing tor u	igiyeme.
Ine	4-21G ca	liculation	yields a	an ener	gy differe	ence bet	ween C_5
and	C7 of 3	3 kJ/mol	$(C_7 mo)$	re stabl	le than C	C5), whe	reas the
prese	ent DZP	calculation	on predic	ts the C	C _s confor	mer of c	liglycine
to be	more sta	able than	C ₇ by 1	3 kJ/m	ol. At th	e TZP le	evel, this

Table VI. Partial Charges Positioned at the Nuclei Calculated from a Least-Squares Fit of the Molecular Electrostatic Potential and the Root Mean Square Deviation of the Fit (kJ/mol)

		•	"All-Atom" Fit			
	-		conformer	(basis set)		
	C ₇ (DZP)	C ₅ (DZP)	α (DZP)	all (DZP)	C ₇ (TZP)	C ₅ (TZP)
<u> </u>	-0.036	-0.038	-0.027	-0.034	-0.032	-0.027
H ₂	0.020	0.013	0.017	0.020	0.017	0.009
H,	0.015	0.013	0.020	-0.004	0.015	0.009
C4	0.026	0.029	0.000	0.033	0.033	0.036
O ₅	-0.637	-0.636	-0.584	-0.619	-0.644	-0.647
C ₆	0.718	0.727	0.706	0.747	0.714	0.736
N ₇	-0.698	-0.710	-0.686	-0.732	-0.698	-0.718
H ₈	0.404	0.395	0.378	0.389	0.402	0.388
C,	-0.049	-0.048	-0.114	-0.080	-0.046	-0.052
H ₁₀	0.076	0.094	0.082	0.072	0.079	0.096
H	0.099	0.097	0.124	0.108	0.105	0.099
C_{12}	0.747	0.761	0.774	0.847	0.746	0.775
013	-0.634	-0.636	-0.584	-0.619	-0.629	-0.627
H ₁₄	0.043	0.042	0.030	0.047	0.050	0.044
His	0.044	0.044	0.086	0.054	0.049	0.049
H ₁₆	0.066	0.072	0.055	0.065	0.057	0.055
N17	-0.642	-0.620	-0.613	-0.672	-0.641	-0.616
H ₁₈	0.370	0.324	0.343	0.350	0.367	0.326
Cin	0.051	0.058	0.026	0.042	0.060	0.067
rmsd (kJ/mol)	0.42	0.38	0.44	1.05	0.46	0.44
		"ل	Jnited-Atom" Fit			
			conform	ner (basis set)		· · · · · · · · · · · ·
	ō	$C_7 (DZP)$	C ₅ (DZP)	α (DZP)		all (DZP)
H,		0.0	0.0	0.0		0.0
H ₂		0.0	0.0	0.0		0.0
H,		0.0	0.0	0.0		0.0
ດ້		0.083	0.112	0.074		0.095
Ö,		-0.520	-0.477	-0.519		-0.486
Ċ,		0.351	0.211	0.433		0.291
N ₇		-0.084	-0.038	-0.125		-0.079
H		0.128	0.134	0.098		0.131
C		0.083	0.112	0.074		0.095
Hig		0.0	0.0	0.0		0.0
Hu		0.0	0.0	0.0		0.0
Cin		0.351	0.211	0.433		0.291
O ₁₁		-0.520	-0.477	-0.519		-0.486
H		0.0	0.0	0.0		0.0
H ₁ ,		0.0	0.0	0.0		0.0
H		0.0	0.0	0.0		0.0
N17		-0.084	-0.038	-0.125		-0.079
His		0.128	0.134	0.098		0.131
C ₁₀		0.083	0.112	0.074		0.095
rmsd (kJ/mol)		1.18	1.00	1.89		2.34

energy difference amounts to 1.7 kJ/mol. In view of the small differences on geometric properties and conformational energies between the DZP and the TZP basis set it, appears that the DZP basis set is a reliable choice at least at the Hartree-Fock level for calculations on peptide conformers.

Table VII, the present results on the relative energies of the different conformations of dialanine and diglycine are compared with the 4-21G data from Schäfer et al.⁸⁻¹¹ and results from force field calculations using the force fields AMBER,¹ ECEPP,³ and CVFF⁴ and data reported by Pettit et al.⁷ A recent reparametrization of the CHARMM force field by Momany et al.²⁴ using the 4-21G data from Schäfer et al. yields conformational energies close to original ab initio data. All force fields give in agreement with the present ab initio calculations the C₇ conformation as the global minimum for dialanine. However, large discrepancies occur for the relative conformation and the C₇ conformation is strongly overestimated in the AMBER and the CVFF force field and in the force field used by Pettit et al.⁷ The ECEPP force field gives the best agreement with the present ab initio results on the C₅-C_{7,ee}

Table VII. Comparison of Conformational Energies of Dialanine and Diglycine Obtained from the Present ab Initio DZP and TZP Calculations with 4-21G Data from Schäfer et al.⁸⁻¹¹ and Results from the Force Fields AMBER,¹ CVFF,⁴ and ECEPP³ and Results by Pettit et al.⁷ (kJ/mol)⁴

Dialanine							
conformer	DZP	4-21G	AMBEI	R CVFF	ECEPF	Pettit	
$\begin{array}{c} C_{7,eq} \\ C_{7,ax} \\ \alpha_{R} \\ \alpha_{L} \\ C_{5} \end{array}$	0.0 12.5 (13.5) 18.5 2.1	0.0 10.9 (24) (28) 5.8	0.0 2.5 15.1 18.0 13.4	0.0 5.4 17.6 (30.5) (10)	0.0 37.2 4.7 9.8 1.6	0.0 0.4 n.d. n.d. 15.1	
			Diglycine	:			
conformer	DZP	TZP	4-21G	AMBER	CVFF	ECEPP	
C ₇	1.3	1.7	0.0	0.0	0.0	0.0	
° Cs	0.0	0.0	3.3	13.8	(12)	3.4	

^a Values in parentheses indicate that this conformation is not a local minimum within the given method or force field.

energy difference for dialanine; however, agreement with the present DZP results with respect to the other conformations, most notably for $C_{7,ax}$, is less satisfactory. The present ab initio data

⁽²⁴⁾ Momany, F. A.; Klimkowski, V. J.; Schäfer, L. J. Comput. Chem. 1990, 11, 654.

7135

predict a significantly larger energy difference for $E(C_{7,eq})$ - $E(C_{7,ax})$ than most of the force fields (except ECEPP; see Table VII). The hydrogen bond in $C_{7,ax}$ is calculated to be shorter than in $C_{7,eq}$. This is in agreement at least with the CVFF force field, which also predicts a shorter hydrogen bond for $C_{7,ax}$. In the CVFF force field, this is achieved at the expense of unfavorable contributions from angle bending. It apears that, in the $C_{7,ax}$ conformer, the hydrogen bond is pushed together by intramolecular strain.

It is difficult to track down the origins of the force field deficiencies. The analysis that we have carried out so far indicates that several small deviations in various terms of the force field add up to the significant energy differences described above. To be more specific, we would like to point to some possible origins for the descrepancies between ab initio data and at least some of the force fields:

(1) The ab initio data predict similar hydrogen bond lengths $R_{H18\dots O5}$ for the C₅ and the C₇ conformers. In contrast, both the CVFF and the AMBER force fields give a longer hydrogen bond for C_5 than for C_7 . In the CVFF force field, this is at least in part due to deviations in the bond and angle terms. CVFF calculates similar values of R_{N7C9} for the C₅ (1.482 Å) and the C₇ conformers (1.485 Å) of diglycine whereas the ab initio data predict a significantly shorter N7-C9 bond length of 1.434 Å for the C₅ conformer than for the C₇ conformer (1.450 Å). CVFF also calculates similar values of $\angle_{N7C9C12}$ for the C₅ (115.5°) and the C_7 (115.7°) conformers of diglycine whereas the ab initio DZP data predict a $\angle_{N7C9C12} = 109.4^{\circ}$ for the C₅ conformer and 112.5° for the C_7 conformer. The same trend is found for dialanine.

Apparently the CVFF force field underestimates the dependence of the bond length N7-C9 and the angle N7-C9-C12 on conformational change. As the values for R_{N7C9} (C₅, 1.451 Å; C₇, 1.457 Å) and $\angle_{N7C9C12}$ (C₅, 108.5°; C₇, 111.6°) calculated with the AMBER force field²³ for the C₅ and C₇ conformers are in better agreement with the present ab initio data, the origin of the discrepancy must be different. We suspect that the hydrogen bond term in the AMBER force field does not describe accurately the difference between these two conformers. An analysis of the various energy terms of the AMBER force field shows indeed that the hydrogen bond term shows the largest energy differences between the C_5 and the C_7 conformers.

(2) All major current force fields use fixed partial charges that do not change upon conformational changes. However, the present data demonstrate that there is a certain change of partial charges on conformational change. If this charge variation is ignored, the error introduced into the force field is around 1-2 kJ/mol.

In summary, we have shown that ab initio SCF calculations at the DZP level on small model dipeptides can be used to assess the quality of current force fields. The ab initio results point to some important deficiencies of the force fields with respect to the relative energies of the C_7 and the C_5 conformations of dialanine and diglycine. We conclude that several of the current force fields overestimate the stability of the C_7 conformation. We are currently using the present results together with additional ab initio calculations to derive an improved parameter set for a protein force field.

Registry No. Dialanine, 19701-83-8; diglycine, 7606-79-3.

Substituent Effects and the Charge Topology in Nitriles and Cyanides

Yosslen Aray,^{†,†} Juan Murgich,^{*,‡} and Miguel A. Luna[§]

Contribution from the Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020A, Venezuela, and Centro Cientifico, IBM de Venezuela C.A., Apartado 64778, Caracas 1060, Venezuela. Received June 4, 1990

Abstract: In order to study the substituent effects and the bonding of the C=N group, a SCF 4-31G** ab initio calculation was undertaken for the $C = N^{-1}$ ion, for nitriles with R = H, F, HO, FO, H₃C, HC = C, NH₂, O = N, N₃, C = N, the E and Z form of iminoacetonitrile and for cyanides with R = Li, HBe, and B. The electron density $\rho(r)$ was analyzed by means of the topological theory of atoms in molecules. The surfaces of zero-flux in $\nabla \rho(r)$ showed that the C valence density of the target fragment absorbed most of the changes, while the N was only slightly perturbed by the R-C bond formation. A correlation was found between the position of the bond critical point and the electronegativity of R for R-C in nitriles but not for the $C \equiv N$ bond. This difference was explained by the changes in the strength of the substituent fields acting on both bonds. The $\nabla^2 \rho(r)$ distribution in the C=N group for the different substituents and counterions showed that all the bonded and nonbonded local concentrations present in the C and N valence shells were affected in a complex way by the bond formation.

Introduction

One of the most important concepts of chemistry is that rates and equilibria are markedly affected by changes in the molecular skeleton or by the introduction of additional substituents.^{1,2} Then, a detailed study of the electronic effects of substitution and coordination on a particular molecular fragment will help to understand the effects governing its chemical behavior. Most of the analyses of the electronic substituent effects were based in the use of σ and π molecular orbitals and their respective populations.³ This approach is not the most appropriate because molecular orbitals and its population do not constitute physical observables as defined by quantum mechanics.^{4,5} An analysis based on a specific orbital description is then flawed by the dependence of the parameters such as the Mulliken population on the model used. In view of these severe limitations, it is more convenient and

[†]On leave from Departamento de Química, Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo, Venezuela [‡]Instituto Venezolano de Investigaciones Científicas.

¹1BM de Venezuela C.A.

⁽¹⁾ Isaacs, N. S. Physical Organic Chemistry; Longman Ltd.: Essex,

⁽¹⁾ Isades, N. S. Physical Organic Chemistry, Dolginan Etd., Essex, England, 1987; pp 114-170.
(2) Taft, R. W.; Topsom, R. D. Prog. Phys. Org. Chem. 1987, 16, 1-83.
(3) Topsom, R. D. Acc. Chem. Res. 1983, 16, 292-298 and Prog. Phys. Org. Chem. 1987, 16, 85-124.
(4) Bader, R. F. W.; Nguyen-Dang, T. 1.; Tal, Y. Rep. Prog. Phys. 1981, 44, 895-948. Bader, R. F. W. Atoms in Molecules: a Quantum Theory; Oxford University Press: Oxford, England, 1990; Chapter 7.
(5) Bader, R. F. W.; Chem. Chem. Res. 1982, 1990; Chapter 7.

⁽⁵⁾ Bader, R. F. W. Acc. Chem. Res. 1985, 18, 9-15.